Anisotropic and excellent magnetocaloric properties of La 0.7Ca0.3MnO3 single crystal with anomalous magnetization

نویسندگان

  • J. C Debnath
  • Rong Zeng
  • Jung Ho Kim
  • Dapeng Chen
  • S X. Dou
  • J. C. Debnath
  • R. Zeng
  • J. H. Kim
  • S. X. Dou
چکیده

Magnetic properties and the magnetocaloric effect (MCE) have been investigated in La0.7Ca0.3MnO3 single crystal with applied field along both the ab-plane and the c-direction. Due to the magnetocrystalline anisotropy, the crystal exhibits anisotropy in the MCE. Upon application of a 5 T field, the magnetic entropy changes (SM), reaching values of 7.668 J/(kg K) and 6.412 J/(kg K) for both the ab-plane and the cdirection, respectively. A magnetic entropy change of 3.3 J/(kg K) was achieved for a magnetic field change of 1.5 T at the Curie temperature, TC = 245 K. Due to the absence of grains in the single crystal, the SM distribution here is much more uniform than for gadolinium (Gd) and other polycrystalline manganites, which is desirable for an Ericsson-cycle magnetic refrigerator. For a field change of 5 T, the relative cooling power, RCP, reached 358.17 J/kg, while the maximum adiabatic temperature change of 5.33 K and a magnetoresistance (MR) ratio of 507.88% at TC were observed. We analysed the magnetization of La0.7Ca0.3MnO3 single crystal at TC and estimated several parameters of spin fluctuation on the basis of a self-consistent renormalization theory of spin fluctuations, with reciprocal susceptibility above TC. We found that the magnetic property of La0.7Ca0.3MnO3 is weakly itinerant ferromagnetic. A large reversible MCE and no hysteresis loss with a considerable value of refrigerant capacity indicate that La0.7Ca0.3MnO3 single crystal is a potential candidate as a magnetic refrigerant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic field induced phase transitions in Gd5(Si1.95Ge2.05) single crystal and the anisotropic magnetocaloric effect

Magnetization measurements using a Gd5(Si1.95Ge2.05) single crystal with the magnetic field applied along three crystallographic directions, [001], [010] and [100], were carried out as a function of the applied field (0–56 kOe) at various temperatures (∼5–320 K). The magnetic field (H)–temperature (T) phase diagrams were constructed for theGd5(Si1.95Ge2.05) single crystal with field along the t...

متن کامل

Anisotropic Magnetocaloric Effect and Magnetic Order in Antiferromagnetic Gd2InGe2

We investigated the transport, thermal and magnetic properties of antiferromagnetic (TN = 45 K) Gd2InGe2. Magnetization measurements under applied magnetic field, oriented along different crystallographic directions, were used to extract the anisotropic magnetocaloric effect. We also measured magnetization under pulsed field up to 45 T. From the analysis of the electrical transport and magnetiz...

متن کامل

Studies on the Optical, Mechanical and Dielectric Properties of Nonlinear Optical Single Crystal Bis (Guanidinium) Hydrogen Phosphate Monohydrate (G2HP)

Single crystals of nonlinear optical material bis (guanidinium) hydrogen phosphate monohydrate (G2HP) belonging to non centrosymmetric space group P 21c were successfully grown by the slow evaporation method. Optical transmittance and second harmonic generation of the grown crystals have been studied by UV-vis-NIR spectrum and Kurtz powder technique respectively. The transmittance of G2HP cryst...

متن کامل

A ug 2 00 8 Crystal growth and anisotropic magnetic properties of RAg 2 Ge 2 ( R = Pr , Nd and Sm ) single crystals

We report the single crystal growth and anisotropic magnetic properties of the tetragonal RAg2Ge2 (R = Pr, Nd and Sm) compounds which crystallize in the ThCr2Si2 type crystal structure with the space group I4/mmm. The single crystals of RAg2Ge2 (R = Pr, Nd and Sm) were grown by self-flux method using Ag:Ge binary alloy as flux. From the magnetic studies on single crystalline samples we have fou...

متن کامل

Anisotropic magnetic entropy change in RFeO3 single crystals(R = Tb, Tm, or Y)

Compared with traditional gas-compression/expansion refrigeration, magnetic refrigeration based on magnetocaloric effect (MCE) exhibits the advantages of high energy efficiency and environment friendliness. Here, we created large MCE in RFeO3 (R = Tb or Tm) single crystals by the magnetization vector rotation of single crystal with strong magnetocrystalline anisotropy (MCA), rather than merely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017